At the very tip of the Lisburne Peninsula, Point Hope, Alaska represents one of the best examples of northermost cultures. Yielding one of the largest samples of northern latitude skeletal remains in the world it has also provided crucial evidence for understanding past foraging lifeways in this remote environment; as well as human, cultural, and biological variation in general. Presenting a set of anthropological analyses on the human skeletal remains and cultural material from the Ipiutak and Tigara archaeological sites, The Foragers of Point Hope sheds new light on the original excavations from 1939 to 1941.

Modern archaeological theory, dental microwear analysis, biomechanics, paleopathology, and population modeling are all employed, bringing these human remains to the forefront of biological anthropology research and addressing debates about subsistence, warfare, activity, and health. Finally, these analyses are integrated into current anthropological perspectives to address the cultural, archaeological, behavioral, and ecological components of human foraging systems.
The Foragers of Point Hope: The Biology and Archaeology of Humans on the Edge of the Alaskan Arctic

On the edge of the Arctic Ocean, above the Arctic Circle, the prehistoric settlements at Point Hope, Alaska, represent a truly remarkable accomplishment in human biological and cultural adaptations. Presenting a set of anthropological analyses on the human skeletal remains and cultural material from the Ipiutak and Tigara archaeological sites, The Foragers of Point Hope sheds new light on the excavations from 1939 to 1941, which provided one of the largest sets of combined biological and cultural materials of northern latitude peoples in the world.

A range of material items indicated successful human foraging strategies in this harsh arctic environment. They also yielded enigmatic artifacts indicative of complex human cultural life filled with dense ritual and artistic expression. These remnants of past human activity contribute to a crucial understanding of past foraging lifeways and offer important insights into the human condition at the extreme edges of the globe.

Charles Hilton is an Assistant Professor in the Department of Anthropology at the University of North Carolina, Greensboro. As a biological anthropologist with a background in human skeletal biology, functional morphology, human evolutionary ecology, and epidemiology, his research focuses on how small-scale human groups, particularly foragers, develop and evolve both short- and long-term biological and cultural responses within environmental settings offering limited resources.

Benjamin M. Auerbach is an Assistant Professor in the Department of Anthropology at The University of Tennessee, Knoxville. A functional anatomist, skeletal biologist, and evolutionary biologist, he has spent fifteen years collecting osteometric and anthropometric data to document morphological variation among modern humans within the context of evolutionary forces.

Libby Cowgill is an Assistant Professor in the Anthropology Department at the University of Missouri, Columbia. Her research interests include human growth, development, and functional morphology as well as Late Pleistocene human evolution. Her current research program explores the relationship between childhood behavior and selection pressure and the formation of adult skeletal morphology.
64 Evolving Human Nutrition: Implications for Public Health Stanley Ulijaszek, Neil Mann & Sarah Elton (eds.) 978 0 521 86916 4
65 Evolutionary Biology and Conservation of Titis, Sakis and Uacaris Liza M. Veiga, Adrian A. Barnett, Stephen F. Ferrari & Marilyn A. Norconk (eds.) 978 0 521 88158 6
66 Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation G. Richard Scott & Joel D. Irish (eds.) 978 1 107 01145 8
67 Bioarchaeological and Forensic Perspectives on Violence: How Violent Death is Interpreted from Skeletal Remains, Debra L. Martin & Cheryl P. Anderson (eds.) 978 1 107 04544 6
The Foragers of Point Hope

The Biology and Archaeology of Humans on the Edge of the Alaskan Arctic

Edited by

Charles E. Hilton
The University of North Carolina at Greensboro, USA

Benjamin M. Auerbach
University of Tennessee, Knoxville, USA

Libby W. Cowgill
University of Missouri, Columbia, USA
CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107022508

© Cambridge University Press 2014
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014
Printed in the United Kingdom by Clays, St Ives plc

A catalog record for this publication is available from the British Library
Library of Congress Cataloging in Publication data

Additional resources for this publication at www.cambridge.org/9781107022508
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents

List of contributors ix
Foreword xi
Preface xvii
Acknowledgements xix

1 Introduction: Humans on the edge of the Alaskan Arctic 1
Charles E. Hilton, Benjamin M. Auerbach, and Libby W. Cowgill

PART I REGIONAL ARCHAEOLOGICAL AND BIOLOGICAL CONTEXT

2 The archaeology of north Alaska: Point Hope in context 11
Anne M. Jensen

3 The Ipiutak cult of shamans and its warrior protectors: An archaeological context 35
Owen K. Mason

4 Ancestor–descendant affinities between the Ipiutak and Tigara at Point Hope, Alaska, in the context of North American Arctic cranial variation 71
Blaine Maley

PART II BIOLOGICAL VARIATION AMONG THE FORAGERS OF POINT HOPE

5 Contrasting the Ipiutak and Tigara: Evidence from incisor microwear texture analysis 99
Kristin L. Krueger

6 The diets of the Ipiutak and Tigara (Point Hope, Alaska): Evidence from occlusal molar microwear texture analysis 120
Sireen El Zaatari
Contents

7 Postcranial pathological lesions in precontact Ipiutak and Tigara skeletal remains of Point Hope, Alaska 138
Charles E. Hilton, Marsha D. Ogilvie, Megan Latchaw Czarniecki, and Sarah Gossett

8 Bone strength and subsistence activities at Point Hope 181
Laura L. Shackelford

9 Postcranial growth and development of immature skeletons from Point Hope, Alaska 212
Libby W. Cowgill

PART III CONTEXTS, CONCLUSIONS, AND COMMENTARIES

10 Morphologies from the edge: Perspectives on biological variation among the late Holocene inhabitants of the northwestern North American Arctic 235
Benjamin M. Auerbach

11 The Ipiutak spirit-scape: An archaeological phenomenon 266
William W. Fitzhugh

12 Point Hope in certain contexts: A comment 293
Don E. Dumond

Index 310
Contributors

Benjamin M. Auerbach, Ph.D.
Department of Anthropology, The University of Tennessee.
Knoxville, Tennessee 37996, USA.

Libby W. Cowgill, Ph.D.
Department of Anthropology, University of Missouri.
Columbia, Missouri 65211, USA.

Don E. Dumond, Ph.D.
Department of Anthropology, University of Oregon.
Eugene, Oregon 97403, USA.

Sireen El Zaatari, Ph.D.
Wiener Laboratory, American School of Classical Studies.
106–76 Athens, Greece.

William W. Fitzhugh, Ph.D.
Department of Anthropology, National Museum of Natural History,
Smithsonian Institution.
Washington, D.C. 20013, USA.

Sarah Gossett, M.S.N., F.N.P.-C.
Department of Endocrinology, Mayo Clinic Health System-Franciscan Healthcare.
La Crosse, Wisconsin 54601, USA.

Charles E. Hilton, Ph.D., M.P.H.
Department of Anthropology, The University of North Carolina at Greensboro.
Greensboro, North Carolina 27402, USA.

Anne M. Jensen, Ph.D.
UIC Science LLC.
Barrow, Alaska 99723, USA.

Kristin L. Krueger, Ph.D.
Department of Anthropology, Loyola University Chicago.
Chicago, Illinois 60660, USA.

ix
List of contributors

Megan Latchaw Czarniecki, M.S., M.A.
Maternal Fetal Medicine, University of Minnesota Medical Center.
Minneapolis, Minnesota 55454, USA.

Blaine Maley, Ph.D.
College of Osteopathic Medicine, Marian University.
Indianapolis, Indiana 46222, USA.

Owen K. Mason, Ph.D.
Institute of Arctic and Alpine Research, University of Colorado.
Boulder, Colorado 80309, USA.

Marsha D. Ogilvie, Ph.D.
Texas Archaeological Research Laboratory.
Austin, Texas 78712, USA.

Laura L. Shackelford, Ph.D.
Department of Anthropology, University of Illinois at Urbana-Champaign.
Urbana, Illinois 61801, USA

Ian Tattersall, Ph.D.
Division of Anthropology, American Museum of Natural History.
New York, New York 10024, USA.

David Hurst Thomas, Ph.D.
Division of Anthropology, American Museum of Natural History.
New York, New York 10024, USA.
3 The Ipiutak cult of shamans and its warrior protectors: An archaeological context

OWEN K. MASON

The specter of skulls with bulging ivory eyes (Figure 3.1) and prophylactic mouth shields (Rainey, 1941, 1942: 318; Giddings, 1967: 119)\(^1\) has hovered over the archaeology of Point Hope for over seventy years. From this disturbing image, the Ipiutak mortuary cult at Point Hope retains its allure and mystique, yielding readily to hyperbole: Its discovery recalled, to J. Louis Giddings (1967: 102), the opening of the fabled 3,500-year-old tomb of Tutankhamun. The facts from the ground have suffered tremendous neglect in the face of the Ipiutak narrative constructed by one of its discoverers (Rainey, 1941). Windswept and austere, Point Hope, 300 kilometers north of the Arctic Circle, is a low, treeless gravel spit thrust into the perennially ice-covered Chukchi Sea. The discovery of hundreds of abandoned houses lined up on shore-parallel beach ridges suggested to Rainey (1941, 1942) the contours of a single deliberate community, an “arctic metropolis” (Time, 1941), the homes of thousands of Ipiutak people. Did several thousand people live at Point Hope over 2,000 years ago? And how could such a considerable populace obtain sufficient wood for fuel, building, subsistence foods and even water? Although the “city” model was disavowed in the final report (Larsen and Rainey, 1948: 47; Larsen, 1952: 23), Rainey (1971: 7) remained wedded to the possibility thirty years later and many in the local community still hold to it. The narrative produced in the flush of discovery serves as a cautionary tale for archaeologists, admitting the theoretical and methodological advances unavailable in the 1940s. The discovery of graves with ivory eyes resonated within the oral history of local residents (Giddings, 1967: 118) and the site was christened Ipiutak, anglicizing its innocuous, descriptive place name Ipiutaq: “strip of land” (Burch, 1981: 71).
Glowing accounts of the immense scale of the late prehistoric (1800 CE) Tiki'gaq settlement had originally induced the Danish–American expeditionary effort of 1939 (Rainey, 1941: 364; Larsen and Rainey, 1948: 5). The Danish explorer Knud Rasmussen (Ostermann, 1952: 47) had pronounced Tiki'gaq “...incontestably the largest ruined Eskimo town in existence. The old settlement, now deserted, consists of 122 very large houses. But as the sea is constantly eating into the spit... this figure is no indication of how large the settlement used to be.” In theory, 600 people lived at Tiki'gaq c. 1800 CE as estimated by Burch (1981: 44), occupying seventy-five structures. The number of human remains at Point Hope was far greater by orders of magnitude: the Episcopal Reverend Thomas claimed to have re-interred over 4,000 crania in just two years, many of whom were “chiefs... interred on top of the upright jaws of the whales they once had killed” (Burch, 1981). Nearly 1,000 whale mandibles that presently surround the Point Hope cemetery were re-assembled.
The Ipiutak cult of shamans and its warrior protectors

in the 1920s by the Reverend Hoare (Lowenstein, 2008: 309ff). Certainly, Larsen and Rainey were justified in their great expectations about Point Hope.

Despite the magnitude of their expectations, the first archaeology of Ipiutak at Point Hope was adventitious; although interested in the *longue durée* of Inuit origins (Larsen, 1952: 27ff), the Larsen and Rainey team was small, three or four archaeologists, unprepared for the magnitude of the discovery. Not until 1941 did the expedition secure assistance from the Civilian Conservation Corps and field a crew of up to thirty “able bodied” men (Larsen and Rainey, 1948: 17). The entirety of the 575 houses were mapped in a mere six days using a plane table—a feat that still limits its cartographic reliability (Larsen and Rainey, 1948: 16); no one has yet superimposed, using GIS, the 1940 map (reproduced at the beginning of this edited volume) atop aerial photographs subsequently available. Visiting the site in 1966, Ed Hosley (1967: 13) counted thirteen additional houses, mostly on the oldest ridge despite twenty-five years of erosion at the site’s margin. The discovery of the Ipiutak burial grounds was similarly problematic; local residents were employed as a shovel-wielding posse, placing thousands of shovel probes across the spit, lured by “prize money” (Larsen and Rainey, 1948: 17)—the “stimulus” of three U.S. dollars per grave (Rainey, 1942: 320) and a bonus of up to fifteen U.S. dollars for ivory eye burials (Kowanna in Hall, 1990: 38). Discovering graves required, on occasion, digging up to one-and-a-half meters below the surface (Kowanna in Hall, 1990: 38). Fortunately, the note-keeping was, for the period, of good quality (Mason, 2010; notes on Larsen field books archived in the Danish National Museum). In all, over seventy houses and 176 burials were uncovered by Larsen and Rainey (1948: 15–17)—with 60% of the burials classified as Ipiutak, despite the circumstance that 20% lacked human bones. Although one might expect that more graves lie undiscovered, a program of extensive shovel testing (Hall, 1990), conducted by local assistants in the late 1980s, failed to disclose any graves near Point Hope, and the extensive gravel pad underlying the relocated village (cf. Hosley, 1967) shelters over two square kilometers from further scrutiny.

Ipiutak mobiliary art presents a Rorschach-blot canvas that has offered prehistorians myriad speculations: the carved walrus bones are pregnant with the visages of polar bears, of loons, of seals and the larvae of botflies. A shamanistic use is likely (Larsen, 1952: 26) for the numerous (*n* = 200) complex and abstract open work carvings that resemble metal work (Larsen and Rainey, 1948: 119, 131ff), termed “impractical objects” by Newton (2002: 46). Upon its discovery, the Ipiutak phenomenon was deconstructed, unraveled in two opposite directions, one far to the west toward the horse-riding plains of Central Asia, to trace its intellectual shamanistic origins in Scytho-Siberian animal
Owen K. Mason

art (Bunker et al., 1970), the other to the east into the boreal forest to trace its material culture, particularly its use of birch bark and a predilection for burning wood instead of seal oil (Larsen, 2001). Ipiutak is one of the rare archaeological phenomena to be defined by its absences, most prominently pottery and the oil lamp (Anderson, 1988: 123ff, Mason, n.d. a), although many of the typical Paleoeskimo practices were lacking (Collins, 1964: 103).

The distribution of Ipiutak sites: Eighty years of discovery

As noted in Chapter 2 by Jensen, following Ipiutak’s discovery at Point Hope in 1940, over a dozen significant Ipiutak localities were identified from the shores of the Chukchi Sea across the Brooks Range, a distribution that only partially reflects the advantages of helicopter survey in the 1960s and 1970s. Despite aerial surveys, the coast remains the focal area for Ipiutak. The summer of 1948 produced tantalizing evidence of Ipiutak settlement across Seward Peninsula, uncovering a birch-bark-covered qargi at Deering (Larsen, 2001), Trail Creek Caves (Larsen, 1968b), and Point Spencer (Larsen, 1979/80). The second densest occupation was uncovered in the early 1960s at Cape Krusenstern by Giddings and Anderson (1986). A relationship with migrating caribou was established in the early 1960s, primarily at Feniak and Desparation Lakes (Irving, 1962), at Onion Portage (Anderson, 1988) and at Anaktuvuk Pass by Campbell (1962: 47ff, Plate 5) and by Mills et al. (2005). Cultural resource surveys in the 1970s and 1980s produced only a handful of localities across the Brooks Range, typically situated on small lakes in the northern foothills, Croxton (Gerlach, 1989) and Itkillik (Reanier, 1992). Only a single site, Hahanudan Lake, discovered in 1971, occurs wholly in the boreal forest (Clark, 1977), although Onion Portage, discovered in 1940, lies at the tree line along the Kobuk River.

Discoveries across northwest Alaska in the last fifteen years have considerably refined the universe of Ipiutak archaeology; these events were further catalyzed by the publication of Larsen’s (2001) monograph on the qargi at Deering. The major discovery (“world class archaeology,” according to Glenn Sheehan) occurred at Deering in 1997, with the uncovering of a small cemetery precinct in association with cultural resource mitigation during a water and sewer project (Steinacher, 1998). In iconography, the ornately decorated grave goods from Deering rival those from Point Hope (Bowers et al., 2009; Mason, 2009c). Since 1985, four coastal localities have produced evidence of small settlements: Cape Espenberg (found in 1988), Qitchauvik, near Golovin (found in 1998), at Kivalina (found in 2005), and at Nuvuk (found in 2006). At Cape Espenberg, several houses occur for which lithic traces were first
encountered in 1960 by Giddings and Anderson (1986: 24), were relocated and tested in 1988 by Harritt (1994: 113ff), and further recorded by Hoffecker et al. (2010). Two locations present range extensions (see also Jensen, Chapter 2): at the south at Qitchauvik within Golovnin Bay on Norton Sound (Mason et al., 2007) and to the north, at Nuvuk, past Point Barrow on the Beaufort Sea. The Nuvuk locality lies several hundred kilometers beyond Point Hope (Jensen, 2009). The Kivalina discovery is among the dozen graves discovered in the last twenty years, and contains part of a structure, excavated to mitigate construction impact (Stern et al., 2010).

The place of Ipiutak in Alaska prehistory: Origins and fate

Many archaeologists have mused that without its unique mortuary assemblage, or its bone technology, Ipiutak would offer far less insight into prehistory. To trace its origins, its predecessors only offer stone tools, so in its deep ancestry Ipiutak is viewed from its distinctive flint-knapping, which “is strongly reminiscent of the [microlithic] Arctic Small Tool tradition” (Dumond, 1977: 103; see discussion in Giddings, 1964: 226ff), “in large part a continuation from the [5,000] year old Denbigh Flint Complex [DFC]” (Collins, 1964: 89). Ignoring its ideological and aceramic idiosyncrasies, Ipiutak is unanimously placed within a post DFC technological continuum from Choris to Norton (Willey, 1966: 430ff). The Choris–Norton–Ipiutak societies (Anderson, 1983: 88) were the progenitors of the Yup’ik societies of the Yukon Delta – a position argued by Collins (1964: 91), but which is obscured by Dumond’s (1977) inclusive use of the “Thule tradition” to describe the cultural entirety of the last millennium.

Between the DFC and Choris, a 500-year “break” occurs “everywhere” in Alaska (Dumond, 1978: 64), so that the development of Choris and Norton is uncertain – did it occur in southern or northern Alaska? If Ipiutak indeed has its origin in the widespread Norton culture (Giddings, 1964; Larsen, 1982; Dumond, 1987, 2000), the process of inventing Ipiutak occurred either on the way to Point Hope – or indeed at Point Hope – or one of the other Ipiutak sites. The artistic and intellectual culture of Ipiutak bears close resemblance to the Old Bering Sea (OBS) mentality (Collins, 1937) that prevailed along Bering Strait – which implies the effects of conversion, political conquest or alliance (Mason, 1998). Very likely, Ipiutak arose in situ at Point Hope from the Norton “Near Ipiutak” community (Larsen, 1982), attracted to a prime walrus location, like many other OBS polities across Bering Strait huddled near walrus haul-outs (Hill, 2011; Mason, n.d. b). The relationship of Ipiutak with younger cultures is one of profound cultural and, likely, genetic disjunction, especially
with those of the Northern Maritime tradition, particularly Birnirk and Thule (Collins, 1964: 98ff). The fate and relationship of Ipiutak to younger Alaska cultures is discussed more fully later; suffice it to say that Mason (1998, 2000; Mason and Bowers, 2009) has argued for population replacement, with Birnirk and Thule peoples entering an empty niche and a barren landscape.

The prehistory of Point Hope: An in situ origin?

From Near Ipiutak to Ipiutak, 2,200 years BP to 1,550 years BP

The earliest archaeological evidence at Point Hope is thin and ambiguous, consisting of only the single undated, H24 house presumed to be early (Larsen and Rainey, 1948: 165, Plate 83) and two dated small camps of the ceramic-using Norton culture (Dumond, 1982), confusingly termed “Near Ipiutak” (Larsen, 1982), that was possibly as early as 2,200 years BP to 1,750 years BP (Larsen, 1968a: 82–3). Despite the sparse domestic evidence from this occupation, the community was probably much larger, considering the survival of thirty middens and twenty-three graves across 500 meters on the oldest beach ridge at Point Hope (Larsen and Rainey, 1948: 225ff). Near Ipiutak, and Ipiutak as well, shares a considerable part of its inventory with the Norton culture (Larsen, 1982), widespread from the Yukon Delta to the southern Alaska Peninsula (Dumond, 1987, 2000; Maschner, 2008). Especially noteworthy are its lithic technology, its use of labrets, the atlatl, the brow band, its house construction, and its organizational imperative in the men’s house (qargi). The “many animal bones” in House 24 indicated to Larsen and Rainey (1948: 165) that seal, walrus, and caribou served as the basis for subsistence, with salmon spears reflecting fishing. More controversial are two whaling harpoon heads from two burials (B83, B85) that led Larsen and Rainey (1948: 163, Plate 79:1,2) to affirm “beyond a doubt” that Near Ipiutak people were whalers. The two graves lack age estimates, however, and conceivably could be Ipiutak. However, so few whale bones were recovered that the degree of whaling, if any, was only a “casual interest” in Harritt’s (1995: 36) view. The implications of Near Ipiutak or Ipiutak whaling remain imperfectly documented – or dated – but such a surplus of food had to have social consequences, as well as implications for the expertise and the organization embedded in the culture. The loss of the whaling imperative distinguishes Near Ipiutak from Ipiutak, and begs for a fuller consideration by archaeologists.

Grave goods from the Near Ipiutak multiple and single burials may be argued to for an in situ development of Norton into Ipiutak – a proposition that remains only hypothetical. For one, the taphonomy of the burials argues against primary context: objects range vertically more than one meter, and the sparsity
of bone indicates scavenging or secondary interment (Larsen and Rainey, 1948: 251). Two disturbed graves, B98 and JB7, have early dates, between 2,200 years BP and 1,860 years BP (Newton, 2002: 99), based on 14C ages on antler open work carvings with “Ipiutak” motifs (sensu Larsen and Rainey, 1948: 245, 251; Plates 59, 66–68). If the graves were associated with the Near Ipiutak camps, then conceivably Norton shamans or artisans prefigured or even developed the Ipiutak cult. Two graves (B102 and B134) of “uncertain type” (Larsen and Rainey, 1948: 102, 250) may also reflect a pre-Ipiutak presence on the Tikiŋaŋ spit in the first centuries CE (Newton, 2002: 99). Nevertheless, the size and scale of the Norton occupation at Tikiŋaŋ remains uncertain; the possible presence of shamans, dedicated cemetery precincts, and casual whaling are powerful arguments for sedentism at Tikiŋaŋ prior to the florescence of Ipiutak elsewhere. Nonetheless, the presence of outsiders remains a major possibility in view of the seemingly major technological shift away from oil lamps and the use of ceramics that delineate Ipiutak from Near Ipiutak Norton. The occurrence of walrus with the earliest occupations at Point Hope is part of a region-wide pattern (Hill, 2011; Mason, n.d. a).

The ultimate origins of Ipiutak mortuary practices may be far to the south within Cook Inlet or on Kodiak Island, considering the idiosyncratic practice of artificial eye-coverings in Kachemak III burials (de Laguna, 1934: 42ff; Workman, 1992: 23), “exotic burial ceremonialism” which occasioned Workman (1982) to speculate on southern affinities. Workman’s (1982: 110) comments remain relevant: “...some of the complex late Kachemak tradition [2,350 years BP to 1,750 years BP] and Ipiutak ceremonialism are linked. Since direct contact is scarcely likely, a link through as yet poorly documented Norton practices seems [more] likely.” In the last thirty years, still no definitively Norton graveyard has surfaced in southern Alaska, due, possibly, to a lack of archaeological effort. Distinctive stone points offer another line of evidence for southern affinities; as re-iterated by Maschner (2008: 174), affirming an original insight linking Ipiutak points with nearly identical “fishtail” points common in lower Cook Inlet at Chirikof Island. The widespread appearance of the weapons system employed for warfare occurs between 2,350 years BP and 1,850 years BP (Maschner, 2008: 175), linked to the development of the Kachemak burial complex (Maschner and Reedy-Maschner, 1998: 36). The southern origin model is supported by temporal priority, if not one of immediate geographic proximity. However, the precise cultural linkages across western Alaska remain unarticulated due to a dearth of archaeological discoveries in the Yukon Delta and Norton Sound. The “ubiquity” of warfare across the entire North Pacific basin should not be underestimated as a pan-regional evolutionary driver (Maschner and Reedy-Maschner, 1998).
Spread of classic Ipiutak, 1,550 years BP to 1,100 years BP

In the first centuries CE, nearly contemporaneous with the OBS culture on St. Lawrence Island (Collins, 1937) and along the Chukotka coast (Mason, 1998, n.d. c; Aruitunov and Sergeev, 2006a, b), the Ipiutak cult arose on the Alaskan mainland, possibly as an ally or rival of OBS for temporal and sacral power in Bering Strait, seeking access to highly valued trade items such as iron and obsidian (Mason, 1998). The Ipiutak cult had several epicenters, representing shamans and communities that interacted within a common zeitgeist (Mason, 1998, 2006, 2009b, c, d). While coastal settlements were large and dominated by houses, the Ipiutak phenomenon extended across the Brooks Range, focusing on single large structures interpreted as qargi, men’s or community structures (e.g., Feniak Lake [Hall, 1974]). Isolated tent rings with a small amount of lithic debitage are known from major caribou crossings (Anaktuvuk Pass [Mills et al., 2005]) or along lake margins (Croxton [Speiss, 1979; Mason and Gerlach, 1995]; Bateman [Reanier, 1992]). The middle Kobuk treeline site of Onion Portage was exceptional in that a notable caribou crossing co-occurred with at least two winter houses and fifty-eight hearths related to temporary fall camps (Anderson, 1988: 113ff).

The large Ipiutak settlement at Point Hope lies toward, if not at, its northern extreme, its size biases our conception of Ipiutak paleoeconomy. In a critical sense, the Ipiutak center of gravity, in demographic terms, was equally within Kotzebue Sound and to the south and into the mountains. The Ipiutak settlement at Kivalina is the closest to Point Hope, less than 120 kilometers southeast, but is known only from a single grave and part of a structure (Stern et al., 2010). Farther south, Ipiutak occupation was notably dense within Kotzebue Sound and across Seward Peninsula, reported at Cape Krusenstern (Giddings and Anderson, 1986), Cape Espenberg (Harritt, 1994; Mason et al., 2007), Kotzebue (Shinabarger, 2009, personal communication), Deering (Larsen, 2001; Bowers, 2009), Point Spencer (Larsen, 1979/80), and within the Trail Creek Caves (Larsen, 1968b). Sites at its farthest extremes, north and south, show a wide contrast: To the south, the Qitchauvik qargi along Norton Sound has a sizable inventory (Mason et al., 2007) while the far north limit, a storm-collapsed driftwood structure at Nuvuk (Point Barrow) consists only of a handful of objects with Ipiutak characteristics, e.g., linear motifs on bone arrow points and in sled runner construction (Jensen, 2009).

Most Ipiutak sites were probably little more than homesteads or brief campsites; only at two places, Point Hope and Cape Krusenstern, does Ipiutak reveal the depth and breadth that establishes it as an equal to the OBS culture (Collins, 1937; Arutiuonov and Sergeev, 2006a, b; Mason, n.d. a) which straddled Bering Strait. The several villages at Cape Krusenstern and at Point Hope had such considerable intellectual and material significance for the Ipiutak world,
considering the profound similitude between motifs at far-distant sites. A most expeditious conclusion is that distant communities participated within a wider cultural system bound together by trade, war, and cosmology (Mason, 1998).

Architecture and domestic activities

Establishing Ipiutak chronology is closely associated with documenting the development of its architecture and in reconstructing its population history. The architecture of Ipiutak, by Alaska standards, is exceedingly well documented, with abundant collections (albeit imprecisely excavated in 1940–1) from nearly a hundred excavated houses and other structures. The sedentary signature of Ipiutak architecture at Point Hope is fairly consistent: Single room houses were built above ground, with many containing short entryways, likely serving as winter vestibules. Ipiutak houses at Point Hope employ stacked driftwood logs to form a single room that varies around a mean of sixteen square meters, with a quarter (25%) that are larger, between twenty-five and thirty square meters, but with just as many that are smaller than sixteen square meters (Mason, 1998: 27). Many houses contain precious few artifacts, as at Cape Espenberg (Harritt, 1994: 111ff), Hahanudan Lake (Clark, 1977), as within the house excavated by Jensen (1997) at Point Hope, and at Deering (Bowers, 2009).

Variability in Ipiutak house sizes presumably reflects household composition and/or comparative social status. The inventories within the excavated Ipiutak houses at Point Hope were so variable that residential craft specialization in ivory working and clothing manufacture was inferred by Mason (2006, 2009a), based on skewed representation of needles, ivory debitage, and stone points. High numbers of arrow points, stockpiled within houses, also reflect the critical need for defense from intruders (Mason, 2006), not the caribou hunting inferred by Larsen and Rainey (1948: 66–7). At Cape Krusenstern the excavation of twenty square wood-heated central-hearth driftwood houses produced lithics (scrapers, discoids), a few decorated pieces, and eighty-five incised pebbles with enigmatic designs, most in the House 40 qargi (Giddings and Anderson, 1986: 140–1). One, possibly typical, short-term occupation is the Ipiutak house at Deering excavated in 1999, which covered nine to twelve square meters, was outlined by narrow timbers, and had a short arctic entry (Bowers, 2009). The Deering structure contained only a small inventory of objects, some with definitively Ipiutak motifs and lithics that included discoidal scrapers and finely wrought end blades (Reuther, 2009b). The most prominent artifacts included a seal-decorated iron-inset engraver and a basally bi-spurred sealing dart (Bowers, 2009). At Cape Espenberg, a bark-floored winter house with a central hearth contained only rather sparse lithic assemblages.
Owen K. Mason

\(n = 53 \), with several structural wood posts but no organic artifacts (Harritt, 1994: 111ff).

The culture also offers a previously unparalleled range of other features, in caches, summer and winter houses, and community structures (i.e., qargi). While cache pits were not documented at Point Hope by Larsen and Rainey (1948), the pits were relatively common at Cape Krusenstern, and may co-occur with summer camp structures of ephemeral construction (Giddings and Anderson, 1986: 146). The contents of a small pit, presumed a cache pit, at Hahanudan Lake contained but few bones and little else (Clark, 1977). Architectural variability is best documented from Cape Krusenstern (Giddings and Anderson, 1986) and from two structures meticulously excavated at Deering (Larsen, 2001; Bowers, 2009). Of the three types of Ipiutak house at Cape Krusenstern (Giddings and Anderson, 1986: 119), the most substantial was excavated nearly one meter subsurface, and was sided with horizontal logs and covered with sod. Many, if not most, have short entries presumably indicative of winter use. The storm-destroyed fifth-century CE structure at Nuvuk seems to be a temporary shelter – a lean-to – in a brief camp (Jensen, 2009).

Chronology and settlement pattern

Unfortunately, the chronology of Ipiutak house construction or mortuary practices is not well authenticated; very few Ipiutak houses or graves are even dated, let alone reliably dated (e.g., using absolute dating methods). Further, the coastal and inland manifestations of Ipiutak differ in the quantity and reliability of data (cf. Gal, 1982; Giddings and Anderson, 1986; Gerlach and Mason, 1992; Harritt, 1994; Larsen, 2001; Newton, 2002; Mason, 2006; Mason et al., 2007). On the coast, the approximately fifty \(^{14}\)C assays are dominated by the dozen from Deering (Larsen, 2001; Reuther and Bowers, 2009). The two largest settlements, Point Hope and Cape Krusenstern, have chronologies that are very thin (less than ten dates each) and rely on \(^{14}\)C assays run over fifty years ago, except for eight assays more recently obtained from Point Hope on archived Danish National Museum samples from the 1940s excavations (Newton, 2002). The original five Point Hope radiocarbon ages are from only five houses; these range from 1,520 to 1,260 years BP from antler within House 50 on the oldest ridge (Ridge E), to 1,342 to 1,057 years BP from wood in House 3 on Ridge C (Mason 2006: 105), overlapping within the seventh century CE.

Point Hope remains the largest known Ipiutak locality: about 600 closely spaced single-room houses cluster tightly on the four earliest beach ridges (for its geomorphology, see Hosley, 1967; Shepard and Wanless, 1971). The amalgamation of houses is more properly considered a *series* of Ipiutak sites
The Ipiutak cult of shamans and its warrior protectors

at a critical resource nexus, most prominently, a walrus haul-out. None of the houses apparently overlie other houses, a pattern that led to the extreme model of a single large town, popularized by Rainey (1941, 1942, 1971). The spatial array of houses precludes a single settlement since the packing of houses was so tight and some houses had entryways that conflicted with adjacent structures (Larsen and Rainey, 1948: 44). This density suggested to Larsen (1952: 23) that Point Hope served only as a temporary “spring and summer” encampment – with inland winter residence; however, such a comparably sized interior winter occupation cannot be established. An even more minimalist, and arguably fanciful, approach was that of McGhee (1976), who proposed that all of the houses and graves resulted from repeated generations of only two families, who were also highly motivated to produce art.

Outside of Point Hope, Ipiutak may have commenced earlier, between 1,700 years BP and 1,350 years BP, based on the recently obtained 14C ages from Nuvuk (Point Barrow [Jensen, 2009]), Kivalina (Stern et al., 2010), Qitchavnik (Mason et al., 2007), and those from Cape Krusenstern (Giddings and Anderson, 1986: 30). The collapsed structure at Nuvuk is not definitively a winter house, and at Kivalina only a single grave, only slightly older (see below) is firmly authenticated. The domestic arrangements at Cape Krusenstern offer more support for sedentism. The Deering Ipiutak cache also produced evidence of an earlier use, possibly c. 1,700 years BP (Reuther and Bowers, 2009). Equivocal evidence of earlier Ipiutak settlement, prior to 1,750 years BP, occurs in the western Brooks Range at Feniak and Desperation Lakes (Gal, 1982); the former consists of a purported qargi hastily excavated in the early 1970s by Hall (1974). The earliness of the lakeside occupations may be a function of definition (“What is Ipiutak?”), its progenitors, and of the inherent imprecision of 14C ages. The definition of Ipiutak is related to the elaborate mortuary complex that only developed late in the culture. Nonetheless, most Ipiutak sites were occupied between 1,350 years BP and 1,050 years BP (Gerlach and Mason, 1992; Mason, 2000, 2006, 2009d), with no ages following that date, a circumstance that suggests a sudden and dire end to the culture.

The ruins of other Ipiutak communities are orders of magnitude smaller than that at Point Hope; only that of Cape Krusenstern recorded sizable settlements where seventy houses occur across five ridges within eight discrete groupings that suggest villages (Giddings and Anderson, 1986: 118). The site was dated by only seven assays from five houses. The Krusenstern Ipiutak occupation may have been earlier than that at Point Hope, possibly as early as the second century CE (1,820 years BP to 1,520 years BP, at House 60). However, for the most part, Ipiutak thrived at Krusenstern between 1,450 years BP and 1,250 years BP, as at Houses 11 and 17, while House 18 was occupied after 1,250
years BP (Giddings and Anderson, 1986: 30). The largest Ipiutak structure at Cape Krusenstern, House 17, covered forty-two square meters and had a central hearth. Twice as large as other houses, House 17 possibly served as a qargi for whaling crews, if one accepts the association of a harpoon head (Giddings and Anderson, 1986: 123, 150ff). Each discrete Krusenstern village had between five and fourteen houses and the entire beach ridge complex was possibly “more heavily populated than at any other time” (Giddings and Anderson, 1986: 116). This contention is supported by S. Anderson’s (2011: 162) survey-derived data that record a major peak between 2,000 and 1,500 RCYBP. Beach Ridge 35, an early and high ridge, supported one large structure, seven-by-six meters, possibly a qargi (House 30). In addition to the villages at Cape Krusenstern, at least thirty-five isolated houses were also located, as well as myriad temporary tent camps. The summer structures may represent a temporary aggregation for trade or feasting, as around the year 1880 at Sisualik “trade fairs” (Nelson, 1899: 260–2). Nonetheless, the degree of Ipiutak commitment to Cape Krusenstern throughout the year remains uncertain, given its dearth (n = 19) of burials, six of which were within structures (Simmons, 1986: 360).

Ipiutak dominated nearly all of the Kotzebue Sound coast between 1,550 years BP and 1,050 years BP, with most areas inhabited in the later centuries. A single feature and a burial at Kivalina dated between 1,483 years BP and 1,295 years BP (1,470 ± 70 years BP, Beta-266435) (Stern et al., 2010). At Cape Espenberg, one winter house was occupied between 1,350 years BP and 1,200 years BP (Harritt, 1994: 111ff). The critically important Deering settlement contained several structures and ten graves, and dated between 1,350 years BP and 1,050 years BP. Deering is notable for its large birch-bark-roofed log qargi, c. 100 square meters (Larsen, 2001) in size, and in a small sparsely supplied driftwood structure (Reuther, 2009a). At the Deering burial precinct, of the ten interments (cf. Bowers, 2009) only the maskoid Burial 4 is dated, at between 1,370 years BP and 1,100 years BP (Reuther and Bowers, 2009). Otherwise, Ipiutak peoples were present across the Seward Peninsula, albeit in only scattered areas (Mason, 2009d), e.g., within the Trail Creek Caves (Larsen, 1968b) and at the western margin, based on a midden from Point Spencer, possibly associated with Ipiutak, dated between 1,350 years BP and 1,050 years BP (Ganley, 2011, personal communication). Ipiutak was notably absent from the crucial Wales region, the long-standing pivot of the Seward Peninsula, although a single Oopik sealing harpoon head, at Cape Prince of Wales, is attributed to Ipiutak by Stanford (1976: 103). At its southern extreme, two large qargi structures at Qitchauvik within Golovin Bay and at Unalakleet contain diagnostic objects (especially at Qitchauvik, in lithics, open work carvings and designs) and may reflect the amalgamation of Ipiutak with the neighboring Norton culture: dated between 1,550 years BP and 1,350 years BP at Qitchauvik
The Ipiutak cult of shamans and its warrior protectors

(Mason et al., 2007) and prior to 1,750 years BP at Unalakleet – although this occupation is considered Near Ipiutak (Lutz, 1972).

The Ipiutak penetration up the Noatak River valley was apparently negligible (Anderson, 1972: 100), with evidence limited to its mouth, from a purported (but undated) Near Ipiutak occupation at Tulaagiaq, a richly appointed burial of two children (Anderson, 1978), and a dense concentration of well-flaked end blades from a small riverside occupation in the lower Noatak canyon at NOA-287 (Hoff et al., 1991), dated as 1,694–1,646 years BP and 1,637–1,366 years BP (Beta-41832) and 1,262–1,196 years BP and 1,191–921 years BP (Beta-41831).

Ipiutak occupation farther up in the mountains is broadly contemporaneous with that on the coasts, although a possibility exists that antecedent occupation occurred along the tundra lakes, for example at Feniak Lake. However, the Feniak \(^{14}\)C ages that precede 1,750 years BP derive from rough, slap-dash shovel excavations into complex stratigraphy (Hall, 1974). Most other interior locales occur within the sixth to eighth centuries CE (Gerlach and Mason, 1992): e.g., at Onion Portage (Anderson, 1988: 48); the Croxton site (Mason and Gerlach, 1995); the Kayuk and Avingak sites, and tent rings dated between 1,705 years BP and 1,410 years BP (Mills et al., 2005: 33, 44–45); near Anaktuvuk Pass (Campbell, 1962: 47; Mills et al., 2005); and the eastern Brook Range (Reanier, 1992). In the boreal forest, near the Yukon River at its farthest southeast limit, Hahanudan Lake (Clark, 1977: 69) revealed several houses, at least two of Ipiutak affinity.\(^{11}\) The central Brooks Range Avingak site, excavated by Campbell in 1961, consists of six house depressions along Tuluak Lake in Anaktuvuk Pass. A large winter house (21 square meters) was occupied between 1,538 years BP and 1,266 years BP (Gal, 1982: 170), based on one of the thousand caribou bones from at least twenty-seven carcasses.

Demography

At the large community at Point Hope, the spatial distribution of houses on the five ridges is weighted heavily toward the middle ridges (Larsen and Rainey, 1948: Figure 2; see the map reproduced at the front of this volume), with the earliest and latest containing the fewest houses. This pattern suggests a demographic cycle with initial settlement, maturation, and decline (Mason, 2006); this consideration will need to be factored into demographic estimates. Individual houses are so close, typically less than five to ten meters apart, that it is unlikely many were contemporaries, although this assumption remains unsubstantiated due to insufficient radiometric dating. Of the seventy-three houses excavated in 1939–41, only five offer single \(^{14}\)C assays (Mason, 2006:...
105), with the oldest age on caribou antler from House 50 falling within the early fifth to seventh centuries CE on the most landward, twenty-eighth ridge. The remaining four \(^{14}\)C ages overlap within a range between 1,370 years BP and 1,080 years BP.

The average winter population of the Ipiutak community can be estimated by employing two essential assumptions: (a) the length of the dated occupation is placed at approximately 300 years, and (b) total living space can be calculated from the ten percent sample listed in the appendices in Larsen and Rainey (1948). These two referents enable us to reconstruct the average population of Ipiutak. First, I assume that either twenty or thirty years define each generation; so that between twelve and fifteen generations lived at Point Hope between 600 CE and 900 CE. Cross-cultural ethnographic data suggest that each person required 2.325 square meters (Narroll’s [1962] rule). Total living space for the 575 houses is c. 6,000 square meters. Arithmetic calculation (total living space divided by generation number) yields an estimate of between 175 and 215 individuals (Mason, 1998: 274; 2006) on average, and possibly more if Ipiutak people preferred or tolerated tighter domestic arrangements. One last factor alters the average population estimate. Since the spatial distribution of houses across the four beach ridges suggests a normal distribution, a reasonable expectation is that the population was lower by possibly ten percent in the earliest phases. However, the length of surface stability must be addressed by additional dating before this hypothesis can be accepted.

Subsistence

Ipiutak communities were predominantly coastal, reliant on sea-mammal hunting for food, but the inland areas served a vital function in providing caribou skin and flesh. The economic basis of the Ipiutak resembled most Holocene Arctic maritime hunters in northwest Alaska: a reliance on ringed and bearded seal, with some attention to caribou. Quantitative faunal analyses are a recent tool and remain few, outside of Point Hope and of recent interest (e.g., Cape Krusentern [Anderson, 1962], Deering [Moss and Bowers, 2007; Saleeby et al., 2009], or the Croxton site [Gerlach, 1989]). Walrusing was important locally, as at Point Hope (Larsen and Rainey, 1948), as was whaling, possibly, at Cape Krusenstern (Giddings and Anderson, 1986: 153). Early researchers, following standard practice at the time, inferred dietary choices only from the percentage counts of animal bones (Larsen and Rainey, 1948: 68) indicating that the Ipiutak at Point Hope relied on ringed seal (53%), walrus (23%), bearded seal (12%), and only a small amount of caribou (10%). Recent quantitative archaeo-faunal analyses show that small mammals and, especially, birds played a larger
role in Ipiutak subsistence than formerly thought – at least, locally, at Deer-
ing (Moss and Bowers, 2005; Saleeby et al., 2009). Fishing was a significant
pursuit at many locales, considering the fish spears even at Point Hope (Larsen
and Rainey, 1948: 78–79). However, despite the evidence of maritime hunting,
early researchers emphasized the role of caribou hunting – even on the coast
(Larsen and Rainey, 1948: 147ff), although much of this inference is based on
the functional categorization of arrow points for hunting, not warring (Larsen

Interior Ipiutak hunters had a high mobility strategy and possibly some
costal groups or families ventured inland seasonally for caribou, but more
likely coastal communities had trade relationships with interior ones. Camp
sites at Onion Portage suggest sixty repeated visits by Ipiutak people (Anderson,
1988: 121) while Anaktuvuk Pass witnessed a similar pattern (Mills et al.,
2005). The charred caribou bone and artifact scatters at Onion Portage had
such a complexity as to impress Anderson (1988: 121–2) with one house
floor, the residua of a temporary pole-framed tent used in spring or winter–spring. Sophisticated archaeofaunal data and analyses of caribou hunting are
restricted to Tukuto Lake, where drives into lakes may have occurred in the
autumn (Speiss, 1979: 158), and at Anaktuvuk Pass, where a highly fragmented
fauna records the “procurement of mature animals ... during a summer or fall
campment, based on the location of tent structure[s]” (Mills et al., 2005: 44–
5). Other small settlements are scattered across the entire Brooks Range; at
the farthest limit, a house was found at the Bateman site on Itkillik Lake more
than 1,000 kilometers inland (Reanier, 1992). Ipiutak people did penetrate the
boreal forest, where three households were settled within dunes on Hahanudan
Lake east of the Koyukuk River (Clark, 1977: 69ff), less than fifty kilometers
south of the Batza Tena obsidian source. Lakes were employed as caribou drive
sites, although fishing cannot be ruled out. The thinness of interior Ipiutak
occupations is observable from the undated Trail Creek Caves 2 and 9, two
labyrinthine limestone cavities in interior Seward Peninsula, where Ipiutak
hunters left seven broken decorated-antler barbed arrowheads (Larsen, 1968b:
35, Plate V: 4–10) as well as four end or side blades (Larsen, 1968b: 34,
Plate IV: 14, Plates IV, V: 12) – evidence of several visits, with tools discarded
during brief visits, sheltering from poor weather to re-tool their spears or arrow
points; again, this is evidence of considerable mobility.

Mortuary patterns

The treatment of the dead offers innumerable clues to the social structure of
the Ipiutak community, and reflects cultural practices that include warfare and
Owen K. Mason

shamanism. Questions of descent and chronology could be resolvable, however, if more graves were dated and if aDNA were analyzed; regrettably, both those research domains remain for future researchers (but see Maley, Chapter 4, this volume). As in establishing the origins of Ipiutak, it is often a matter of archaeological preconception and definition, rather than hard data, that defines the chronology of mortuary patterns. Significantly, not a single burial is reported from an interior settlement. The circumstance that mortality was most common within the large villages conflicts with the Larsen and Rainey (1948: 44) model of a transient trade-fair population agglomeration and supports a view that the coast was the locus of substantial winter/early spring settlements – not the interior.

Ipiutak burials are concentrated adjacent to the large coastal settlements, with approximately 120 from Point Hope (Larsen and Rainey, 1948); nineteen across several Cape Krusenstern ridges, mostly in or near houses (Simmons, 1986: 356ff); ten from Deering (Bowers, 2009); only two isolated likely graves at Cape Espenberg (Harritt, 1994); two subadult burials from Tulaagiaq (Anderson, 1978); and single graves from Kivalina (Stern et al., 2010) and Kotzebue (Gannon, 1987). Unique among the mortuary remains is one presumptively early but undated battlefield assemblage, termed Battle Rock, which contains at least four headless “Ipiutak” graves of mixed character (Simmons, 1986: 359). The chronological placement of Battle Rock would be a major datum toward understanding the development of Ipiutak mortuary patterns; however, the human remains were repatriated without such analyses. One burial – Burial 4 – stands apart from the several dozen possibly war-battered bodies atop this knoll near Cape Krusenstern. Burial 4 is deep and stone lined, containing at least three individuals and 348 artifacts, mostly antler arrowheads (65%). Were these associated with heroic warrior(s) who mobilized their neighbors and relatives as a military effort? Two other burials are attributed, without clear justification, to Near Ipiutak: (a) a single individual at Kotzebue interred with ten arrowheads with end blade slots (Gannon, 1987: 2); and (b) at Tulaagiaq near the mouth of the Noatak, two children between five and thirteen years old were interred with a plentiful array of apparent grave goods, including more than 250 antler arrowheads (Anderson, 1978: 53). The amount of grave goods associated with children is remarkable.

Burials at Point Hope vary in construction and in the representation of associated grave goods. There were fifteen discrete groups or precincts, with three clusters accounting for over half the graves, as discussed by Newton (2002) and Mason (2006: 109). The grave precincts vary in the amounts of lithic armament (whether of hunting or military) and in the amount of open work carvings or mystical capital. The most expeditious conclusion, revising Newton’s interpretation of chi-square analyses, is that graves were placed
The Ipiutak cult of shamans and its warrior protectors

Figure 3.2. Line drawings of carvings made on caribou antler tubes associated with the child buried in Ipiutak Burial 21. These artifacts (60.1–7451, 60.1–7452, and 60.1–7454) depict various abstract human faces in repeating patterns. The images are reproduced from Larsen and Rainey’s (1948) Figure 28 with permission of the American Museum of Natural History.

in a systematic fashion with degrees of power and influence affecting their placement (Mason, 2006: 109). A small fraction of the Point Hope graves were constructed of wood, with many of these bearing traces of substantial amounts of offerings and hence higher status individuals.

Multiple burials, often of an adult and a child, make up about one-quarter of the interments at Point Hope, with a few burials consisting of between four and six individuals. Several burials contained a substantial quantity of weaponry – more than twenty-five arrowheads – likely employed in warfare (Larsen and Rainey, 1948: 225, 227, 231, 240, 244, 247). For example, Burial 26 is an “unusually large” complex array of at least two individuals and fifty-one arrowheads (Larsen and Rainey, 1948: 231). Implements of shamanic curing were present in some burials as well, such as the antler tubes that occur above the child who was positioned between the legs of Burial 21 (see Figure 3.2).
Eight chronometric ages for Point Hope Ipiutak mortuary practices employed archived artifacts from the Danish National Museum (Newton, 2002: 99). The dates extend to several centuries earlier than that of the Ipiutak houses at the village site, but also overlap with them, with dates from graves being between 2,350 years BP and 1,550 years BP: Unfortunately, for ease of classification, the eight assays from five graves include two “Jabbertown” interments that had pottery. In addition, the relationship of grave goods to the burials was ambiguous in Burials 74, 102 and JB7; these were inconclusive because the bodies were deposited within a midden possibly reworked or modified by animals (Larsen and Rainey, 1948: 245, 246, 251). In several cases (B98, B102 and B134), objects had inconclusive cultural affinities. The grave B74, however, had an assemblage most clearly Ipiutak, and dated between 1,680 years BP and 1,535 years BP (Larsen and Rainey, 1948). This dating is confirmed, based on four 14C ages, as early as 2,225 years BP, continuing through the first two to three centuries CE, which precede the admittedly few dated houses. Of the five grave clusters closest to the Ipiutak houses, the single dated interment is Burial 74, which, as cited, is considerably older than the only house with a pre-1,500 years BP age (House 50).^{13}

Grave offerings that hold numinous properties are rare among Ipiutak graves, although an association of these few offerings with children may prove crucial. Only one maskoid at Point Hope was placed atop the chest of a child buried at the knees of two adults, but with few other offerings, in a log “tomb” (Larsen and Rainey, 1948: 240–241). Deering Burial 4 also bore a maskoid along with the remains of seven children within a log coffin capped by stone slabs (Mason, 2010). Burial 51, depicted in Figure 3.1 with ivory eyes, faced east and was not associated with other grave goods or a wooden coffin (Larsen and Rainey, 1948: 236). Several objects, mainly ivory eyes or noseplugs, or loon skulls, were employed as prophylactic devices, especially the antler “death masks” in B107a and JB22, or the mouth covers in Burials 8, 41 and 61 (Larsen and Rainey, 1948: 122, Plate 49).

The radiocarbon dates from the Point Hope burials imply a far greater antiquity for its settlement, preceding by centuries the age of the houses from the beach ridge surface. Mason (2006: 108) speculated that houses were indeed stratified, contrary to conventional wisdom that no houses were superimposed. From that observation, one may conclude that older houses should be discoverable beneath the surface-revealed house depressions and outlines, especially noting the observation that graves were typically buried deeper than one meter into the gravel, some of which may be storm deposited. Quite possibly, some of the potentially older, underlying houses may belong to the presumed ceramic-using Near Ipiutak ancestors of the Ipiutak people.
The Ipiutak cult of shamans and its warrior protectors

Trade and exchange

Ipiutak people maintained numerous long-distance contacts, either direct or indirect, ranging from Kamchatka and Chukotka, across the Brooks Range, and amongst themselves, most in evidence between Point Hope and Deering. Metallurgical (not meteoric) iron and obsidian13 likely associated with the Deering Ipiutak house were obtained from Kamchatka, several hundred kilometers distant (Reuther, 2009a: 209, 216; 2009b: E-79ff). Evidence that iron was possibly widely used in engraving is documented from three diverse occurrences: an iron burin in Point Hope House 51 (Larsen and Rainey, 1948: 83, Plate 8: 24); within Ipiutak House 1 at Deering (Reuther, 2009a: 209), and at Hahanudan Lake (Clark, 1977: 69). Brooks Range chert was in considerable demand across the Ipiutak world, as was coal jet, employed for decorative insets in mask-like carvings and figurines (Mason 2009c). Commodities that traded hands included walrus tusk, possibly traded to their Bering Strait neighbors,14 especially the OBS, and probably also caribou skins from the interior (Mason, 1998). However, in comparison to other, later “Thule” peoples, the Ipiutak traded in far fewer commodities (i.e., lacking is evidence of an Ipiutak trade in jade, slate, or clay).

The identical motifs that occur on Deering, Point Hope, and Ekven objects, especially spear heads, are evidence either of the exchange of ideas across frontiers or possibly the curation of war trophies. Common intellectual legacies are apparent in the stylistic similitude of the OBS and Ipiutak design motifs, and the common use of atlatl stabilizers. Direct regional ties are evident in identical line and dot motifs, as exemplified by two widely separated cases: dual-rayed circle and dot motifs on the Deering Burial 4 maskoid and an identical design on a bone flaker from House 32 at Point Hope (Larsen and Rainey, 1948: 94). Both the Deering burial and the Point Hope house are dated by 14C assays as between the seventh and ninth centuries CE (Mason, 2006, 2009b: 120; 2009c). Additional cross-regional ties can be established between Deering and Chukotka, observing two emblematic designs on double biface-inset spears, one from Deering Burial 1, that are nearly identical to those on a spear from Ekven. However, is this evidence of a common cultural language or is it an enemy spear, i.e., a war trophy, buried with its victim? (Mason 2009c: Figure 10–19a, b and c). Or is the Ekven piece a war trophy from Deering?

Shamanic vision in Ipiutak art

The Ipiutak cult has maintained its grip on the archaeological and popular imagination through the profundity of its iron-engraved walrus ivory mortuary
objects (such as those depicted on the cover art of this volume), tied very likely
to shamanic performances within the qargi (Rainey, 1941, 1942, 1947, 1971;
Collins, 1973; Auger, 2005; Mason, 2006, 2009b, c). The techniques, psychic
energy and cosmologies of shamanism are widespread across Eurasia and the
New World (Eliade, 1964), and were observed in the late nineteenth century
along Bering Strait (Nelson, 1899; Bogorz, 1904–9). Shamans possess healing
knowledge and employ trance in order to contact other realms, considered to
The flight of the spirit is the essence of shamanic trance (Eliade, 1964: 5) that
involves a journey to the “other world” (Pearson, 2002: 75). The ability to see
one’s skeleton, reducing one’s self to the core, is a prerequisite of shamanic
learning (Eliade, 1964: 62ff); this is a belief portrayed by Ipiutak iconography
(Larsen and Rainey, 1948: 125ff).

The cosmic dimensions of Ipiutak iconography can be tracked through its
participation in the pan-Arctic bear cult (Larsen, 1968/69, 1979/80; Sutherland,
2001b), with firm links to OBS, namely in the Okvik “Madonna” (Collins,
1976). The vision quest is well exemplified by the all-seeing, high-flying Arct-
ic Loon whose sight replaces that of the blind human (Morrow and Volkman,
1975; Auger, 2005: 45). Second sight is a prime characteristic of the shaman,
often associated with predicting the future and seeing into the souls of oth-
ers (Eliade, 1964: 60–61). The three “masks” or maskoids – two from Point
Hope (Burials 64 and 77; Larsen and Rainey, 1948: 123ff, Plates 54 and 55),
and one from Deering (Mason, 2009c) – are the profound representation of
cosmic transformation, replete with multiple animal faces and gaping mouths,
although many Ipiutak objects reveal multiple animal and human identities
(Auger, 2005: 64, cf. Mason, 2009c, d). Shamanic flight is allegorized by the
transformative, nearly invisible botfly larvae (*Cephenemyia trompe*) issuing
from the two most iconic masks (Mason, 2009b, c). Dozens of larvae gesta-
tate within a single caribou nasal passage and induce a lunacy in the animal
(Whitney, 2004) that suggests shamanic possession (Mason, 2009b), recalling
that, like shamans, botflies are so incredibly fast as to prevent human sight (*Time*,
1926).

A shamanic mindset is evident in a wide variety of conspicuous and copi-
ously decorated Ipiutak objects, some likely in daily use (Auger, 2005: 40ff,
64). Sucking tubes for healing are known from Point Hope (Larsen and Rainey,
1948: Plates 26, 29). Nearly 100 open work carvings were likely used as
shamanic accoutrement (cf. Nelson, 1899: 359; Collins, 1973: 12) occurring
primarily at Point Hope (Larsen and Rainey, 1948: 119, 127ff), but also at
Kivalina (Stern *et al.*, 2010) and Qitchauvik (Mason *et al.*, 2007). The polar
bear comb or “rake” from Point Spencer is among the most complex and
accomplished objects of Ipiutak iconography (Larsen, 1979: 80; Collins, 1973:
The Ipiutak cult of shamans and its warrior protectors

This polar-bear open work carving has a fanged and gaping mouth, evidence of a pan-Arctic bear cult (Larsen, 1968/69, 1979/80); the piece has shaman-transformative aspects as well, in its multiple orientations, e.g., accessory seal figures (Collins, 1973: 25). A similar, roughly executed, undecorated “rake” occurs within Point Hope Burial 89 (Larsen and Rainey, 1948: 145).

Objects likely used in shamanic garb were often interred, although the precise clothing use and context are ambiguous in cases where human remains are lacking. One iconic, often illustrated, copiously engraved baby walrus, which was placed under the skull of an adult in Burial 42 (Larsen and Rainey, 1948: 125–6, Plate 53:1), was likely sewn to a shaman’s garb (Anderson, 1984: 89). The three renowned maskoids vary in context; one lacked any human remains (B64), while the other two (B77 at Point Hope and Deering Burial 4) were, as already noted, associated with children’s bones. Other mortuary offerings have parallels in folk tales, especially the story of the “blind man and the loon,” suggested by the false (all-seeing!) eyes inset into a loon cranium placed within Burial 21 (Larsen and Rainey, 1948: Plate 49:7; Morrow and Volkman, 1975).

Browbands, apparently attached to wooden hunting hats (cf. Nelson, 1899: 166ff), offered a canvas for iconic representations of gaping mouthed creatures, of fearful awesomeness, similar to the “rakes” or the maskoids. Rear-fastening troughs on the ivory Deering maskoid suggest its attachment to skin clothing (Mason, 2009c), with a similar use for the openwork pieces. Drawings of human figures on sucking tubes and browbands suggest tattoos or labretifery, e.g., an antler tube from Burial 21 (Larsen and Rainey, 1948: 115; see Figure 3.2) and a carved figurine in Burial 108 (Larsen and Rainey, 1948: 116ff, Plate 52:3). Ipiutak tattooing likely resembled that of the OBS culture (Larsen and Rainey, 1948: 116ff; Smith and Zimmerman, 1975), reflecting a common ancestry. On the other hand, labrets were possibly standard accessories, present on several human figures and portraits (Larsen and Rainey, 1948: 114) but are rare (n = 7) in graves, serving as treasured heirlooms. The labret is a peculiarly southern trait, a very profound ethnic marker that branded Ipiutak people as firmly different than OBS people (cf. Dumond, 2009). Further, its successors, the Birnirk/Thule people, did not sport labrets until 1400 CE.

The Qargi institution: Social integration evident in architecture

The significance of the oversized Ipiutak house aggregations remains mystifying: Mason (1998) argued for a fully sedentary character, but with only 150 to 250 winter residents, not thousands. The alternative is that of seasonal
aggregation for trading (Larsen and Rainey, 1948) – though the season of occupation includes the presence of walrus. Can the two views be reconciled? One indication of such occasional aggregation is architectural: very likely, several adjacent communities gathered seasonally to conduct ceremonies in the structures, qargi, that occur at evenly spaced intervals across northwest Alaska. The placement of qargi appears to have a systematic geographic logic, as if access involved a principle of regional affinity, with qargi constructed on the coast at Point Hope, Deering, Cape Krusenstern, Qitchuavik, and, possibly, Unalakleet. Across the western Brooks Range were qargi at Feniak Lake and nearby Desperation Lake. Another argument for the systemic character of the qargi is that many were contemporaneously occupied, accepting only the extant \(^{14}\)C data, although Feniak and Unalakleet could be earlier and both may be evidence of a preceding Norton culture organizational imperative. Hypothetically, the regional spacing of Ipiutak qargi reflects several interacting politic-religious nodes for gift exchange, and for shamanic performances. In addition, commodities very likely traveled between qargi: iron and obsidian, ivory, caribou skins and seal oil. Symbolic exchange is indicated from the occurrence of pictograph-inscribed cobbles in qargi that are widely separated, geographically.

The qargi that are located on the coast are better documented archaeologically than those on the interior lakes, although neither of the Point Hope qargi are dated. A large oval qargi (a size over 120 square meters) was constructed between 1,509 years BP and 1,332 years BP along Golovnin Bay at Qitchuavik (Mason et al., 2007: 62–3). The structure sheltered male activities such as stone-tool production (debitage and numerous end-blades) and wood-working (Alix, 2007). Its use as a theatrical space is in evidence from several wood carvings: human maskettes, a seated human in shamanic transformation, and of caribou, one with an x-ray skeletal motif (Mason et al., 2007: 88). A considerable amount of wood-working and maintenance of arrow points was also undertaken by men within the Deering qargi (Larsen, 2001; Alix, 2009). The two undated Point Hope qargi differed in size but offered comparatively little in terms of artifacts; a few objects could be considered gender related, but the large space may have been of more use for performance or gatherings. Significantly, each Krusenstern community maintained a single large structure, with only sparse occupational debris. However, male-specific tool manufacture activities were rather more common at Deering (Larsen, 2001: 49–60) and possibly at Cape Krusenstern H-17 and H-30, while qargi were smaller, both only forty-two square meters, and were used between 1,450 years BP and 1,100 years BP (Giddings and Anderson, 1986: 30, 133, 136).

The sizable Deering and Feniak qargi also contained a sparse number of artifacts, although the inscribed stones in the latter are more indicative of shamanic
practice. The Deering wood and birch-bark-roofed structure, over 108 square meters, is well preserved; the girth of the horizontal timbers in the Deering qargi was so substantial (approximately forty centimeters in diameter) that Larsen (2001: 18) inferred wood procurement from the forest by sled. Minimally, forty-five people, likely many more, could have occupied the Deering qargi (Mason, 1998) seated on the three benches placed around a central hearth (Larsen, 2001: 23ff). Men’s labor is evident from the artifact inventory that had only a few decorated pieces (a harpoon socket and a flaker [Larsen, 2001: 32, 67]) and abundant stone, organic and wood objects, including bow parts, spoons, trays, and a very distinctive built-up “Athapaskan” sled (Larsen, 2001: 40ff). Five thick floors were deposited between 1,410 years BP and 970 years BP, based on \(^{14} \text{C} \) ages \((n = 10) \) on dog feces, birch bark or wood (Larsen, 2001: 30). The Deering qargi was one of the largest built prehistoric spaces known in northwest Alaska, and may betray the nature of social contacts into the boreal forest, and explain the peculiarities of Ipiutak.

Qargi occur in the Brooks Range, with two large structures constructed only twenty kilometers apart on the shores of two small lakes, Feniak Lake (Hall, 1974: 484) and Desperation Lake (Irving, 1962: 81), within the upper Noatak drainage (which itself lacked substantial Ipiutak populations [cf. Anderson, 1972]). Radiocarbon ages suggest that both of the qargi were used contemporaneously during two intervals: first possibly as early as between 1,850 and 1,750 years BP and subsequently between 1,350 years BP and 1,050 years BP (Lawn, 1975: 207–8; Gal, 1982: 170–1). The Feniak qargi was over 100 square meters in size, and, although incompletely reported (cf. Hall, 1973), contained nearly 15,000 waste flakes, as well as numerous pictographs and arrow points – presumably evidence of male, possibly, martial pursuits. The nearby twelve-meter-long oval structure at Desperation Lake, discovered by Irving (1962: 81), contained “Ipiutak-like” side blades and a discoid, as well as enigmatic pictographs and imposing, two-meter-wide stone walls; a single \(^{14}\text{C} \) age of 1,830 \pm 170 RCYBP (Gal, 1982: 172) offers only a broad age estimate between 203 BCE and 580 CE. The Desperation Lake structure may be among the earliest qargi, possibly from a Norton (“Near Ipiutak”) occupation, and may precede the Feniak structure.

The origin of the qargi can be equated with the development of men’s political and social power, manifested in cultic and shamanic activity. Along the eastern Norton Sound, Norton people constructed a ninety-six square meter qargi at Unalakleet using log-banked hearths (“in use for a rather long period” [Lutz, 1972: 67]) and similar to the Ipiutak qargi at Deering (Larsen, 2001; Lutz, 1972: 344). The Unalakleet qargi was possibly occupied by the mid first century CE, and possibly as late as the early seventh century, contemporaneous with early Ipiutak occupations within Golovin Bay and at Deering.
Owen K. Mason

Warfare

The evidence for violent conflict ("warfare") during Ipiutak is unequivocal (see Mason, 2006, 2009a) and includes inferences from mortuary contexts, within households, and even battlefields. The quantity of bow and arrow technology is in itself an indication of the amount of warfare (see Mason, 2012), contrary to the caribou hunting attribution of Larsen (1952: 24) and Rainey (1942: 370). At Cape Krusentern, three partially burnt skeletons were uncovered, one wounded in the pelvis, recovered in a shallow pit with an adze that possibly was used in digging in an attempt to escape from the flames (Giddings and Anderson, 1986: 127). Several mixed burials occur at a presumptive battlefield locale, Battle Rock, and are notable for a lack of crania (Simmons, 1986: 356ff); however, a full taphonomic analysis is lacking. Deering Burial 1 offers far more definitive evidence of warfare: one vertebra bore a direct hit, and the individual was associated with fifteen arrow points and two fragmentary lances decorated with extra-regional designs, related to Cape Dezhneva, East Cape, who were possibly the enemy perpetrators (Mason, 2009b). The sternum of Point Hope Burial 89 was also impaled by an arrow point, and the chest was "literally shot full of arrows" (Larsen and Rainey, 1948: 61, 243); the cranium was apparently disarticulated prior to burial. Evidence of Ipiutak warfare also includes the artifactual: bone daggers and clubs, extremely thin barbed bone points, and the sheer number \((n > 500)\) – especially within the houses – of "fishtail" points so useful in intrapersonal violence (Larsen and Rainey, 1948). Similar fishtail points are common in Cook Inlet and are considered evidence of warfare (Maschner, 2008). One piece of slat armor within House 7 was considered intrusive by Larsen and Rainey (1948: 192).

Specialized shamanistic and military expertise was also evident in the amount of grave goods and in the spatial arrangement of the cemetery (cf. Mason, 2006, re-interpreting Newton, 2002, and Larsen and Rainey, 1948). Shamanistic beliefs were revealed in a small fraction of the graves, with a preference for transformative imagery based on bears, the botfly, loons, seals and occasionally humans (Mason, 2009b). A pan-regional identity in Ipiutak intellectual culture is shown by the common motifs shared by East Cape, on Chukotka, as well as Deering and Point Spencer (Mason, 2009a).

Ideological origins of Ipiutak

Upon its discovery in 1939 at the end of the pre-radiocarbon era, the search for Ipiutak progenitors proceeded to employ the paradigm of anthropo-geography derived from nineteenth-century German and Scandinavian scholars (Larsen
The Ipiutak cult of shamans and its warrior protectors

and Rainey, 1948; Larsen, 1952). A priori, it was assumed that its provocative animal art originated far beyond the Chukchi Sea or Bering Strait region based on broadly similar motifs and subjects of representation (Larsen, 1952). In this manner, Ipiutak was easily linked to the savage animal and open work carvings of shamanistic horsemen (“Scythians”) across the entirety of north Asia, from as far west as the Yamal Peninsula near the Kara Sea, and as far as north China (Larsen, 1952: 28ff; Jettmar, 1964; Bunker et al., 1970). Jenness (1952: 32ff) critiqued and summarized the argument, favoring the southern influences from the jade eye inlets of the Han dynasty (200 BCE to 200 CE). A generation later, Collins (1971) offered a similar derivation for the composite maskoids; most Chinese forms are Shang dynasty (1100–700 BCE) and considerably predate the late first millennium CE. However, it is not the specific motif that is the question, it is rather the behavioral complex that spread the motif as part of its ritual labor.

The basis for a Eurasian origin for Ipiutak and/or OBS styles lies in deep time and through the psychic linkage with pan-Arctic shamanic beliefs and, possibly, psychotropic drug use (Mason, 1998; cf. Pearson, 2002). The converse is that shamanism, derived from Scythian roots, is a very late introduction into the Bering Sea world, a doubtful proposition (Sutherland, 2001a, b). If it were a recent entry or possibly a set of new or innovative beliefs, Ipiutak/OBS could represent the introduction of esoteric knowledge, through a cult of shamans, passed from shaman to mentor across ethnic and linguistic boundary lines. This passage of knowledge more likely resembles the spread of a new and powerful religion than of a mere esthetic style. This is why it confounds traditional taxonomic archaeology of the cultural historical mold that is so common in Alaska. However, does religion spread innocently and passively or does it inevitably follow at the point of a sword or arrow? Can we link the shaman’s power with military power? In other words, this perspective would argue for an actual conquest of Point Hope by OBS peoples and the imposition of a new ideology on a preexisting Norton community. One might anticipate that the disorder of the Jabbertown burials might be explained as the chaotic impact of violent actions. Unfortunately, the data to resolve such a speculation are too slim at present.

Fate and significance of the Ipiutak culture

To conclude, the elaborate Ipiutak mortuary cult reflects an elaborate shamanic belief system, imbedded within an intercontinental sociopolitical network that obtained extra-regional commodities, principally iron and obsidian, from afar in Siberia. Neighborly interactions were not always peaceful and often devolved
into violence, feuding, if not full-scale war. Ipiutak people aggregated seasonally at critical regional centers, gathering within community structures for cultic or theatric performances. Status was ascribed, in that young children were interred with sumptuous and spiritual objects. Unfortunately, most Ipiutak assemblages are comparatively late, between 1,400 years BP and 1,150 years BP, possibly at the termination of the culture/cult, a circumstance that does not inform us about its origin that appears, on present data, to precede 1,550 years BP, possibly by several centuries. On the other extreme, at its termination, virtually no Ipiutak components are younger than 1,050 years BP, with an abruptness that suggests a sudden collapse for the culture (Mason 1998, 2000, 2006, 2009c). Did a series of poor hunting years lead to famine, or did a single military defeat result in enslavement or population resettlement or relocation? In either case, these circumstances may reflect a catastrophic termination, with other possibilities including population replacement or migration. The development of the Ipiutak art style and mortuary pattern might be part of a cultural revitalization movement, possibly, resembling a “millennial” crisis cult that betokened the end of time, cosmic decline, an ideology developed in response to explain and to empower in adverse climates and political reversals. The qargi were virtually abandoned everywhere at the same time; across northwest Alaska, especially the Brooks Range, Ipiutak is succeeded by a hiatus of up to a century or more until the appearance of the Thule culture, associated with a northern group who were the ancestors of the modern Inupiat (Mason and Bowers, 2009). Ipiutak collapsed so universally and completely that neither climate nor political change should be excluded from explanation – especially in view of the Medieval Climate Anomaly (MCA) that started around 1,050 years BP (Mason and Barber, 2003; Mason, 2009a).

The issue of a catastrophic, climatically driven termination to Ipiutak involves the detailed consideration of numerous proxy climate records that are regionally specific, including beach ridges and tree rings (Mason and Jordan, 1993; Mason and Gerlach, 1995; Mason and Barber, 2003), too diverse to be fully reviewed in this chapter (cf. Mason and Barber, 2003: 84ff; Mason, 2009a: 97). Further, new high-quality local datasets continue to revolutionize our understanding; for example, varved lake sediments from the central Brooks Range indicate that warmer conditions prevailed from 1,220 years BP to 1,100 years BP, with slightly higher temperatures in the following 150 years, until 980 CE, when temperatures cooled (Bird et al., 2009). Extra-regional data show that warm weather prevailed in north China during the tenth century, albeit with considerable local variability (Ge and Wu, 2011: 25). The complex and varied responses involved in the MCA presented a series of possibly unprecedented challenges to Ipiutak peoples – involving rapid changes between warm and cold,
The Ipiutak cult of shamans and its warrior protectors

often in the same decade (cf. various papers in Xoplaki et al., 2011). Did sea mammal (walrus, seal) or salmonid populations decline? To resolve the issue of climatic forcing will require a considerable improvement in our state of knowledge about Ipiutak chronology, subsistence, and cosmology. Hopefully, this volume will serve as a motivation to supplement that database and answer the many outstanding questions raised herein.

Notes

1. The iconic image of the skull of Burial 51 with the ivory eyes, so crucial to the Ipiutak narrative, was presented at the end of the final report by Larsen and Rainey (1948), and is reproduced here (Figure 3.1). In addition, the grave goods from Burial 41, including those within the eye sockets, were briefly discussed and illustrated (ibid. p. 234–5, Plate 49).

2. While the estimate of 122 houses by explorer Knud Rasmussen (Ostermann, 1952: 47) is widely accepted (cf. Burch, 1981: 43), apparently no map was produced and recording methods, even definition standards, were likely imprecise. Writing of “Old Tiagara,” Larsen and Rainey (1948: 20) observe that the “... ruins now form four irregular mounds covered with tall grass... for the most part it is impossible to recognize individual house mounds.” Did Rasmussen count multi-room houses as one house or as a single house? As Burch (1981: 42) commented and illustrated, the surface configuration and dimensions of a Tikigaqmiut house are difficult to discern even when in use. Lacking a precise map, the precision of any estimates should be questioned, especially those of Rasmussen and of Larsen and Rainey.

3. The first reliable \(^{14}\)C dates from Ipiutak, acquired in the 1950s, supported the expectations of an early age for Ipiutak (Rainey and Ralph, 1959; Ralph and Ackerman, 1961).

4. The erosion rate along the north aspect of the Point Hope spit is estimated by two distance comparisons. First is that of the Reverend Driggs, who in 1909 reported 56.4 meters of loss in the prior eighteen years (1890–1908), 3.2 meters per year in relation to his church building at the Ipiutak site. This interval can be confused since Driggs’ tenure is not mentioned by Larsen and Rainey (1948: 19). Several meters eroded in 1939–41 (Larsen and Rainey, 1948). Aerial photographic comparisons by Hosley (1972: 11) established that 73 meters had eroded from Tikigaq between 1940 and 1967, at approximately 2.7 meters per year. The contribution to erosion by the extensive subsistence digging at Tikigaq remains uncertain. In addition, the Tikigaq mounds’ high silt and ice content probably increases its rate of erosion as large blocks are undercut by waves, in contrast to Hosley’s view. Erosion rates since 1967 are not documented, but it is unlikely that rates have continued at such high levels.

5. The amount of the “prize” money increases with the years, from $3.00 in 1942 (Rainey, 1942: 320), $5.00 in the 1970s (Rainey, 1971: 7), and in 1990 a reported $15.00 bonus for ivory eye burials (Kowanna in Hall, 1990: 38) – it is not known
if the post 1950 writers are correcting for inflation, although the Native informant
does state that “$15 was a lot of money in those days.”

6. The Point Hope mortuary data were assembled by Crass (1998), and also collated
and further analyzed by Newton (2002: 15ff).

7. As enshrined on the Tikigaq website: “Dating from approximately 600 BCE, Point
Hope has one of the longest documented, continuous occupations of Inupiaq marine
mammal hunters in the Arctic. Layer upon layer of archeologic[al] remains have
provided a window into the lifestyles and traditions of the region’s people.” (http://
www.Tikigaq.com/inupiaq_people/our_roots.shtml)

8. The two samples from House 30 vary widely: The older age, c. 1,900 RCYBP, is
less convincing than the 1,400 RCYBP age because unidentified charcoal inherently
has a “whole tree” uncertainty. Hence the younger age seems preferable.

9. This assessment may require revision in light of the intensive 14C dating by S.
Anderson (2011: 162), which indicates that the Cape Krusenstern population was
higher during the eleventh to fourteenth centuries CE.

10. The Kivalina site NOA-362 is a sizable assemblage, including four open work
carvings, several fishtail points, an adze, and even lithic debitage, some associated
with one of nine graves laid atop a wood frame, possibly the remains of a house
depression. The grave is about forty centimeters below surface, typical for Ipiutak
at Point Hope (Stern et al., 2010).

11. The relationship of Ipiutak to the boreal forest, so evident to Larsen (2001), remains
controversial; Mason (n.d. a) reviews this hoary and still controversial issue. How-
ever, only the very small Hahanudan Lake settlement of two structures is fully
within the trees. Most interior Ipiutak sites lie either at the forest–tundra boundary
or within the tundra. Fuel and wood supply issues would thus be critical for any
winter occupation (Mason, 1998).

12. Newton’s (2002) chi-square analyses were interpreted to exhibit no relationship
statistically between grave goods and shamanism, or power. However, a closer
inspection of her analyses reveals that the focus on group characteristics failed to
analyze individual grave assemblages and minimized single grave assemblages. Fur-
ther, Newton (2002: 24) reclassified wood burials without additional data, reducing
sample size. Several grave and grave clusters do account for the majority of grave
goods, and of grave goods of a particular type. For example, open work carvings
occur in sizable numbers (>100) in only two clusters (Newton, 2002: 77), while
arrowpoints (>100), indicative of war to Mason (1998), occur mostly in four clus-
ters. While the relationship may not be statistically significant, sample size or other
factors may be involved.

13. To quote Reuther and Bowers (2009: 216): “One obsidian artifact found in the
upper portion of fill within . . . Ipiutak house area is geochemically similar to obsid-
ian from Mt. Kankaren in Chukota, Siberia. This piece may relate to the Ipiutak
occupation . . . the presence of this piece of Siberian obsidian and iron engraver
tip . . . within Deering . . . shows connections to East Asian trade networks.”

14. However, it should be recalled that most, if not all OBS groups also had ready access
to walrus, so that perhaps surplus walrus was accumulated by several OBS groups
for trade with other non-OBS groups to the west and south of the Bering Strait,
across Chukotka and Kamchatka.
The Ipiutak cult of shamans and its warrior protectors

References

The Ipiutak cult of shamans and its warrior protectors

The Ipiutak cult of shamans and its warrior protectors

Owen K. Mason

The Ipiutak cult of shamans and its warrior protectors

Time magazine (1926). Cephenemiya. Time, XII [issue of April 5].

Time magazine (1941). Arctic metropolis. Time, XXXVII, 11, 58–9 [issue of March 17].

Time magazine (1948). Diggers. Time, LIII, 16, 70–2 [issue of October 18].

Owen K. Mason

